2,867 research outputs found

    Experimental analysis of the Strato-rotational Instability in a cylindrical Couette flow

    Full text link
    This study is devoted to the experimental analysis of the Strato-rotational Instability (SRI). This instability affects the classical cylindrical Couette flow when the fluid is stably stratified in the axial direction. In agreement with recent theoretical and numerical analyses, we describe for the first time in detail the destabilization of the stratified flow below the Rayleigh line (i.e. the stability threshold without stratification). We confirm that the unstable modes of the SRI are non axisymmetric, oscillatory, and take place as soon as the azimuthal linear velocity decreases along the radial direction. This new instability is relevant for accretion disks.Comment: 4 pages, 4 figures. PRL in press 200

    Parametric instability and wave turbulence driven by tidal excitation of internal waves

    Full text link
    We investigate the stability of stratified fluid layers undergoing homogeneous and periodic tidal deformation. We first introduce a local model which allows to study velocity and buoyancy fluctuations in a Lagrangian domain periodically stretched and sheared by the tidal base flow. While keeping the key physical ingredients only, such a model is efficient to simulate planetary regimes where tidal amplitudes and dissipation are small. With this model, we prove that tidal flows are able to drive parametric subharmonic resonances of internal waves, in a way reminiscent of the elliptical instability in rotating fluids. The growth rates computed via Direct Numerical Simulations (DNS) are in very good agreement with WKB analysis and Floquet theory. We also investigate the turbulence driven by this instability mechanism. With spatio-temporal analysis, we show that it is a weak internal wave turbulence occurring at small Froude and buoyancy Reynolds numbers. When the gap between the excitation and the Brunt-V\"ais\"al\"a frequencies is increased, the frequency spectrum of this wave turbulence displays a -2 power law reminiscent of the high-frequency branch of the Garett and Munk spectrum (Garrett & Munk 1979) which has been measured in the oceans. In addition, we find that the mixing efficiency is altered compared to what is computed in the context of DNS of stratified turbulence excited at small Froude and large buoyancy Reynolds numbers and is consistent with a superposition of waves.Comment: Accepted for publication in Journal of Fluid Mechanics, 27 pages, 21 figure

    Tidal instability in a rotating and differentially heated ellipsoidal shell

    Full text link
    The stability of a rotating flow in a triaxial ellipsoidal shell with an imposed temperature difference between inner and outer boundaries is studied numerically. We demonstrate that (i) a stable temperature field encourages the tidal instability, (ii) the tidal instability can grow on a convective flow, which confirms its relevance to geo- and astrophysical contexts and (iii) its growth rate decreases when the intensity of convection increases. Simple scaling laws characterizing the evolution of the heat flux based on a competition between viscous and thermal boundary layers are derived analytically and verified numerically. Our results confirm that thermal and tidal effects have to be simultaneously taken into account when studying geophysical and astrophysical flows

    Spontaneous generation of inertial waves from boundary turbulence in a librating sphere

    Full text link
    In this work, we report the excitation of inertial waves in a librating sphere even for libration frequencies where these waves are not directly forced. This spontaneous generation comes from the localized turbulence induced by the centrifugal instabilities in the Ekman boundary layer near the equator and does not depend on the libration frequency. We characterize the key features of these inertial waves in analogy with previous studies of the generation of internal waves in stratified flows from localized turbulent patterns. In particular, the temporal spectrum exhibits preferred values of excited frequency. This first-order phenomenon is generic to any rotating flow in the presence of localized turbulence and is fully relevant for planetary applications

    Stratorotational instability in Taylor-Couette flow heated from above

    Full text link
    We investigate the instability and nonlinear saturation of temperature-stratified Taylor-Couette flows in a finite height cylindrical gap and calculate angular-momentum transport in the nonlinear regime. The model is based on an incompressible fluid in Boussinesq approximation with a positive axial temperature gradient applied. While both ingredients itself, the differential rotation as well as the stratification due to the temperature gradient, are stable, together the system becomes subject of the stratorotational instability and nonaxisymmetric flow pattern evolve. This flow configuration transports angular momentum outwards and will therefor be relevant for astrophysical applications. The belonging viscosity α\alpha coefficient is of the order of unity if the results are adapted to the size of an accretion disc. The strength of the stratification, the fluids Prandtl number and the boundary conditions applied in the simulations are well-suited too for a laboratory experiment using water and a small temperature gradient below five Kelvin. With such a rather easy realizable set-up the SRI and its angular momentum transport could be measured in an experiment.Comment: 10 pages, 6 figures, revised version appeared in J. Fluid Mech. (2009), vol. 623, pp. 375--38

    The Universal Aspect Ratio of Vortices in Rotating Stratifi?ed Flows: Experiments and Observations

    Full text link
    We validate a new law for the aspect ratio α=H/L\alpha = H/L of vortices in a rotating, stratified flow, where HH and LL are the vertical half-height and horizontal length scale of the vortices. The aspect ratio depends not only on the Coriolis parameter f and buoyancy (or Brunt-Vaisala) frequency Nˉ\bar{N} of the background flow, but also on the buoyancy frequency NcN_c within the vortex and on the Rossby number RoRo of the vortex such that α=f[Ro(1+Ro)/(Nc2Nˉ2)]\alpha = f \sqrt{[Ro (1 + Ro)/(N_c^2- \bar{N}^2)]}. This law for α\alpha is obeyed precisely by the exact equilibrium solution of the inviscid Boussinesq equations that we show to be a useful model of our laboratory vortices. The law is valid for both cyclones and anticyclones. Our anticyclones are generated by injecting fluid into a rotating tank filled with linearly-stratified salt water. The vortices are far from the top and bottom boundaries of the tank, so there is no Ekman circulation. In one set of experiments, the vortices viscously decay, but as they do, they continue to obey our law for α\alpha, which decreases over time. In a second set of experiments, the vortices are sustained by a slow continuous injection after they form, so they evolve more slowly and have larger |Ro|, but they also obey our law for α\alpha. The law for α\alpha is not only validated by our experiments, but is also shown to be consistent with observations of the aspect ratios of Atlantic meddies and Jupiter's Great Red Spot and Oval BA. The relationship for α\alpha is derived and examined numerically in a companion paper by Hassanzadeh et al. (2012).Comment: Submitted to the Journal of Fluid Mechanics. Also see the companion paper by Hassanzadeh et al. "The Universal Aspect Ratio of Vortices in Rotating Stratifi?ed Flows: Theory and Simulation" 201

    Image Watermaking With Biometric Data For Copyright Protection

    Full text link
    In this paper, we deal with the proof of ownership or legitimate usage of a digital content, such as an image, in order to tackle the illegitimate copy. The proposed scheme based on the combination of the watermark-ing and cancelable biometrics does not require a trusted third party, all the exchanges are between the provider and the customer. The use of cancelable biometrics permits to provide a privacy compliant proof of identity. We illustrate the robustness of this method against intentional and unintentional attacks of the watermarked content

    Generating Functions For Kernels of Digraphs (Enumeration & Asymptotics for Nim Games)

    Full text link
    In this article, we study directed graphs (digraphs) with a coloring constraint due to Von Neumann and related to Nim-type games. This is equivalent to the notion of kernels of digraphs, which appears in numerous fields of research such as game theory, complexity theory, artificial intelligence (default logic, argumentation in multi-agent systems), 0-1 laws in monadic second order logic, combinatorics (perfect graphs)... Kernels of digraphs lead to numerous difficult questions (in the sense of NP-completeness, #P-completeness). However, we show here that it is possible to use a generating function approach to get new informations: we use technique of symbolic and analytic combinatorics (generating functions and their singularities) in order to get exact and asymptotic results, e.g. for the existence of a kernel in a circuit or in a unicircuit digraph. This is a first step toward a generatingfunctionology treatment of kernels, while using, e.g., an approach "a la Wright". Our method could be applied to more general "local coloring constraints" in decomposable combinatorial structures.Comment: Presented (as a poster) to the conference Formal Power Series and Algebraic Combinatorics (Vancouver, 2004), electronic proceeding

    Progress on testing Lorentz symmetry with MICROSCOPE

    Full text link
    The Weak Equivalence Principle (WEP) and the local Lorentz invariance (LLI) are two major assumptions of General Relativity (GR). The MICROSCOPE mission, currently operating, will perform a test of the WEP with a precision of 101510^{-15}. The data will also be analysed at SYRTE for the purposes of a LLI test realised in collaboration with J. Tasson (Carleton College, Minnesota) and Q. Bailey (Embry-Riddle Aeronautical University, Arizona). This study will be performed in a general framework, called the Standard Model Extension (SME), describing Lorentz violations that could appear at Planck scale (101910^{19} GeV). The SME allows us to derive a Lorentz violating observable designed for the MICROSCOPE experiment and to search for possible deviations from LLI in the differential acceleration of the test masses
    corecore